Set-Based Requirements, Technology, and Design Development for SSNX

M.C. Parker, M.D. Garner, J.T. Arcano, N. Doerry Naval Sea Systems Command

> Warship 2017: Submarines & UUVs June 14th -15th , 2017 Bath, UK

DISTRIBUTION STATEMENT A: Approved for Public Release; distribution is unlimited.

Preparing for SSNX

- The U.S. Navy shipbuilding plan starts construction of the next generation submarine in 2034
- Historical trends show that design development needs to begin at least 10 years prior to construction start

A New Era in Undersea Warfare

- Future requirements and technologies are yet to be defined
- The global pace of technology development is accelerating

The Classic Design Paradigm

- A manual point-based design spiral approach is flexible and accurate, but very slow and manpower intensive
- Few design points can be evaluated, meaning limited understanding of requirement impacts
- Not ideal when requirements are uncertain or coupled

Evans, J.H., "Basic design concepts," Naval Engineers Journal, Vol. 21, pp. 671–679, 1959.

Motivation for Set-Based Design

- Pre-Milestone A decisions are very influential; the majority of costs are committed well before they are incurred
- Set-based design is about making the right decision the first time by **method**ically understanding tradeoffs prior to commitment
- Experience and theory show that this results in a shortened development cycle, at lower cost, with higher quality

From limited investigation of relatively few design points

To robust understanding of concepts throughout the design space

The Set-Based Design Method

DISTRIBUTION STATEMENT A: Approved for Public Release; distribution is unlimited.

U.S. Navy Applications of Set-Based Design

The ultimate objective has been to enable informed and defendable decisions by clearly presenting tradeoff information between cost, schedule, and capability.

http://www.navy.mil/navydata/our_ships.asp

Set-Based Design for SSNX

- The trade space for future submarines includes both Block development for the VIRGINIA Class and SSNX
- The trade space spans near, mid, and far term time horizons

SSNX Capability Concepts

- The set of capability concepts is defined with historical data, alternative futures studies, future threat assessments, mission engineering, and war gaming
- Infeasible or inferior alternatives are eliminated through documented and defensible analysis

SSNX Technology Concepts

- The set of technology concepts is defined by science and technology frontiers, research and development frontiers, and current technology
- Infeasible or inferior alternatives are eliminated through documented and defensible analysis

SSNX Concept Design

- The set of SSN concept designs is defined by the naval architectural characteristics and boundaries for future SSN hull, mechanical, and electrical systems
- Infeasible or inferior alternatives are eliminated through documented and defensible analysis

SSNX Program Assessment

- The set of program options is defined by the range of acquisition strategies, cost, industrial base limits, and design and build timelines applicable to future submarines
- Infeasible or inferior alternatives are eliminated through documented and defensible analysis

VIRGINIA Class Block Upgrade Example

A block upgrade imposes a specific set of technology, platform, and programmatic constraints. However, the capability concepts and overall trade space are not constrained.

Feasible Block Upgrade

A feasible region for a block upgrade exists if sufficient capability can be provided with available technology and within existing platform and programmatic constraints.

Technology Pull

Block upgrade technology investment is required if sufficient capability cannot be provided with available technology, but the existing platform and programmatics are sufficient.

Technology Push

The capability concept set may expand if technology is available outside the initial bounds.

SSNX Pull Signal

A new class is required if sufficient capability cannot be provided within existing platform or programmatic constraints; technology investment needs will also be apparent.

Conclusion

- An aggressive timeline and broad uncertainty around design requirements has led the U.S. Navy towards a set-based strategy for requirements, technology and design development for SSNX
- The purpose of using a set-based strategy is to make the right decisions the first time by methodically understanding tradeoffs prior to commitment
- The benefit of good decisions during the early-stages is better designs at lower costs on shorter schedules

